Concurrency In Rust

Alex Crichton

40 Years of Microprocessor Trend Data

7
10 § Transistors
b i (thousands)
10° bingle-Thread
g Performance
w (SpecINT x 10°)
Frequency (MHz)
10°
Typical Power
10° (Watts)
1 Number of
10 Logical Cores
A m v Tv¥ vy ; R |
100 X" ZEI SERRETTRR X ----- *--- A ST S S N R .
1970 1980 1990 2000 2010 2020

Year

Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten
New plot and data collected for 2010-2015 by K. Rupp

Bug 631527
Parallelize selector matching

NEW Assigned to dzbarsky
v Status (NEW bug with no priority)

Product: » Core

Component: » CSS Parsing and Computation
Status: NEW

Reported: 7 years ago

Reported: 7 years ago

oo 1° s~ i -~ « 1

v

Get help with this page

Must be
this tall to
write multi-
threaded
code.

@ The Rust Programming Language Blog

Fearless Concurrency with Rust

Apr 10, 2015 e Aaron Turon

The Rust project was initiated to solve two thorny problems:

e How do you do safe systems programming?
e« How do you make concurrency painless?

Initially these problems seemed orthogonal, but to our amazement, the solution turned out to be
identical: the same tools that make Rust safe also help you tackle concurrency head-on.

Memory safety bugs and concurrency bugs often come down to code accessing data when it
shouldn’t. Rust’s secret weapon is ownership, a discipline for access control that systems programmers

trvs t0 follow hinit that Riiet’'e comnilar checke etaticallvy for vou

What Rust has to offer

Strong safety guarantees...
No seg-faults, no data-races, expressive type system.

...without compromising on performance.
No garbage collector, no runtime.

Goal:
Confident, productive systems programming

Concurrency?

Rust?

LIbraries

What's concurrency?

In computer science, concurrency is da
property of systems in which several
computations are executing
simultaneously, and potentially interacting
with each other.

Getting our feet wet

// What does this print?
int main() {
int pid = fork();
printf("%d\n", pid);

Concurrency Is hard!

Data Races

Race Conditic\
Deadlocks Exploitable!
Use after free /

Double free

Concurrency Is nicel

YouTube (32 bit)

Concurrency”

Rust?

LIbraries

Zero-cost abstractions

4
Memory safety & data-race freedom

Confident, productive systems programming

What's safety”

volid example () {
vector<string> vector; Mutation

/] /
-auto& elem = vector|[0];

vector.push back(some string);
cout << elem;

liased om ers

Dang\mg po n er!

Rust's Solution

Ownership/Borrowing

/LN

. Memory No data
No runtime
Safety races

|

C++ GC

Ownership

fa main() { fn take(v: Vec<1i32>) {

let mut v = Vec::new(); [/ o
v.push(1l); }
v.push(2);

take(Vv);

[/ ...

e ﬁ.
e

Ownership

fn main() { fn take(v: Vec<i32>) {

let mut v = Vec::new(); /] ...
v.push(1l); }
v.push(2);

take(Vv);

[/ «..

Ownership

fn main() { fn take(v: Vec<i32>) {
let mut v = Vec::new(); /] ...
v.push(1l); }
v.push(2);
take(Vv);

v.push(3);

Ownership

fn main() { fn take(v: Vec<i32>) {
let mut v = Vec::new(); /] ...
v.push(1l); }
v.push(2);
take(Vv);

error: use of moved value v

BOrrowing

fn main (fn pead(v: &het<¥éexj33>) {
‘let mut v = Vec::new(); vipush(1l);

push(&mut v); }

read(&v);

/] ..

Safety in Rust

Rust statically prevents aliasing + mutation
Ownership prevents double-free
Borrowing prevents use-after-free

Overall, no segfaults!

Concurrency”

Rust?

Libraries

|_ibrary-basead concurrency

Originally: Rust had message passing
bullt into the language.

Now: library-based, multi-paradigm.

Libraries leverage ownership and
borrowing to avoid data races.

std::thread

let loc = thread::spawn (|| {
“world”

b) s
println! (“Hello, {}!7”,

loc.j01n () .unwrap ()) ;

std::thread

let mut dst = Vec::new/();
thread: :spawn (move ||
dst.push (3) ;

b) g
—asEpusht4)+

N

error: use after move

std::thread

let mut dst = Vec::new/();
thread: :spawn (|| {

-astEpush{3)+

b) s
dst.push (4) ; ‘\\\\~

error: value doesn't live long enough

std::sync::Arc

let v = Arc::new (vec![1l, 21);
let v2 = |[v.clone();

thread: :spawn (move || {

println! (“{}”, v.len());a
b) s

another function (&v2);

’I
-
-
.—
-
-

std::sync::Arc

let v = Arc::new(vec!|[1l, 2]);

let v2 = v.clone();
thread: :spawn (move || {
I push{3)5;—

b) s

another function (&v2);

error: cannot mutate through shared reference

std::sync::Mutex

fn sync 1nc(counter: &Mutex<i32>) {
- .

let mut data: Guard<i3z> =
N

*data += 1;
b

https://commons.wikimedia.org/wiki/File:No-DRM_lock.svg

std::sync::mpsc

// Prints 4 and 5 in an unspecified order
println! (“{:?}”, rx.recv()):;
println! ("{:?}", rx.recv());

rayon

—

fn sum of squares (input: &[132]) -> 132 {
input.i1ter ()
.map(|&1] 1 * 1)
.sum ()

rayon

use rayon::prelude::*;

fn sum of squares (input: &[132]) -> 132 {
1nput.par 1ter ()
.map(|&1] 1 * 1)
.sum ()

rayon

use rayon::prelude::*;

fn sum of squares (input: &[132]) -> 132 {
let mut cnt = 0;
1nput.par 1iter ()
.map ([&1]|
et ———15—

1 * 1
})
.sum ()

} error: cnt cannot be shared concurrently

100% Safe

Everything you just saw Is foolproof
No segtaults
No data races

No double frees...

doc.rust-lang.org/stable/book

users.rust-lang.org

http://github.com/alexcrichton/futures-rs

